什么叫做差分法?差分法的具体步骤是什么

2024-05-19 11:23

1. 什么叫做差分法?差分法的具体步骤是什么

差分法的定义及具体步骤如下:
一、差分法是微分方程的一种近似数值解法。具体地讲,差分法就是把微分用有限差分代替,把导数用有限差商代替,从而把基本方程和边界条件(一般均为微分方程)近似地改用差分方程(代数方程)来表示,把求解微分方程的问题改换成为求解代数方程的问题。在弹性力学中,用差分法和变分法解平面问题。
二、差分法的具体步骤:
1、“差分法”本身是一种“精算法”而非“估算法”,得出来的大小关系是精确的关系而非粗略的关系;
2、“差分法”与“化同法”经常联系在一起使用,“化同法紧接差分法”与“差分法紧接化同法”是资料分析速算当中经常遇到的两种情形。
3、“差分法”得到“差分数”与“小分数”做比较的时候,还经常需要用到“直除法”。
4、如果两个分数相隔非常近,我们甚至需要反复运用两次“差分法”,这种情况相对比较复杂,但如果运用熟练,同样可以大幅度简化计算。

什么叫做差分法?差分法的具体步骤是什么

2. 有限差分法的概述

微分方程的定解问题就是在满足某些定解条件下求微分方程的解。在空间区域的边界上要满足的定解条件称为边值条件。如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。不含时间而只带边值条件的定解问题,称为边值问题。与时间有关而只带初值条件的定解问题,称为初值问题。同时带有两种定解条件的问题,称为初值边值混合问题。定解问题往往不具有解析解,或者其解析解不易计算。所以要采用可行的数值解法。有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。

3. 有限差分法

有限差分法是以差分原理为基础的一种数值计算法。它用各离散点上函数的差商来近似替代该点的偏导数,把要解的边值问题转化为一组相应的差分方程。然后,解出差分方程组(线性代数方程组)在各离散点上的函数值,便得边值问题的数值解。
现以二维等步长差分格式为例,说明有限差分法的原理和方法步骤。
1.区域离散化,作网格剖分

图1⁃4⁃1 二维等步长正方形网络

如图1⁃4⁃1所示,用平行于坐标轴的两组直线族将地下划分成正方形网格,相邻两坐标线的距离为h,则任一点的x、z坐标为
x=ih(i=0,1,2,…,M)
z=kh(k=0,1,2,…,N)
每个正方形为一单元,其边长h称为步长,网格的交点称为节点。任一节点的坐标(x,z)可表示为(ih,kh),或简化为(i,k),用阶梯状折线代替原来的曲线段。在边界线以内的节点称为内节点,边界上的节点称为边界节点。
2.微分方程离散化,构组差分方程
某一内节点(i,k)处的电位为U(i,k),由于h很小,可将节点(i,k)四周的电位在节点处展成泰勒级数:

地电场与电法勘探


地电场与电法勘探


地电场与电法勘探


地电场与电法勘探

式中Ux,Uxx,……和Uz,Uzz,……分别表示U对x和z的一阶导数、二阶导数等。将前两个式子相加,并且忽略h的四次项与更高次项,经整理可得:

地电场与电法勘探

同理得:

地电场与电法勘探

将上述Uxx和Uzz代入含源分区均匀岩石中位函数U所满足的微分方程(1⁃4⁃16)的第二式,即得二维函数U(x,z)的差分方程:
U(i+1,k)+U(i,k-1)+U(i-1,k)+U(i,k+1)-4U(i,k)=h2f(1⁃4⁃18)
对于无源分区均匀介质,位函数 U(x,z)所满足的微分方程(1⁃4⁃17)的差分方程为
U(i+1,k)+U(i,k-1)+U(i-1,k)+U(i,k+1)-4U(i,k)=0(1⁃4⁃19)
3.线性方程组的形成与求解
对于边界节点,其相应的差分方程可根据边界条件给出。全部结点所建立差分方程(1⁃4⁃18)和(1⁃4⁃19)的总和可分别写成以下矩阵形式:
〔A〕·{U}={F}(1⁃4⁃20)
和
〔A〕·{U}=0(1⁃4⁃21)
〔A〕是方程组的系数矩阵,它是与电阻率分布有关的函数;{U}是电位U的列向量,其分量为所有节点上的电位;{F}是常向量。当给定电阻率分布及边界条件后,解线性方程(1⁃4⁃20)和(1⁃4⁃21),便可求得电位的空间分布。
电位{U}值的计算精度与步长h的大小有很大关系。一般说来,网格划分越细,即h值越小,{U}值与理论值就越接近。但是此时节点数目也急剧增加,因而所需的计算机内存和计算时间也就会增大。解决计算速度与精度这一矛盾的较好方法是采用变步长,即在近区将网格分得密些,远区影响较小可分得稀些。

有限差分法

4. 差分法的基本思想是什么?差分法和广义差分法的主要区别是什么?

广义差分法是一种新的微分方程数值解法。它兼有差分法的简单性和有限元法的高精度性,还具有保持质量守恒等良好性质。当前国际上在计算力学、计算物理等领域中流行的有限体元法是广义差分法的一些重要理论问题开展研究,同时探讨其实际应用。研究的结果建立了高次元广义差分法(包括二次元和三次元格式等)的最佳收合敛价估计;建立了高阶微分方程的非协调广义差分法及其最佳收敛价估计;得到广义差分解的12最佳阶敛性估计和超收敛性,证明广义差分法存在应力佳点;将广义差分法应用于非线性波研究,给出正则长波方程高次广差分格式,并对双孤立波碰撞过程进行数值模拟,取得良好的效果
广义差分法可以克服所有类型的序列相关带来的问题。一阶差分法是它的特例。

5. 有限差分法的差分方法的发展和应用

前面阐述了两个自变量,线性方程的差分法。实际问题常会遇到多个自变量,非线性的方程或方程组;它们还可能是混合型的偏微分方程(如机翼的跨声速绕流),其解包含着各种问断(如激波间断、接触间断等)。非线性问题的差分法求解是十分困难的。随着电子计算机的发展,在解决各种非线性问题中,差分法得到了很快的发展,并且出现了许多新的思想和方法,如守恒差分格式,时间相关法,分步法等。 把定常的微分问题用一个相应的非定常问题来代替,然后用差分法解后者的初值问题,要求当时,它的稳定解为原来问题的解,这类方法叫作时间相关法。实践上,当计算时间足够大时,就能得到满足给定精度的近似解。例如拉普拉斯方程第一边值问题: 可以用热传导方程的初边值问题:来代替。若用显式格式计算(27),可避免解大型代数方程组。特别是当微分方程的类型在定解区域内发生变化时,可只用一种类型来算,而使问题大大化简。这种方法在定常问题中广泛使用。缺点是达到定常解的计算时间较长,有待改进。 把复杂的问题的每一时间步分解成几个中间步,例如把多维问题按坐标分解为几个一维问题,然后用差分法解这些比较简单的各中间步,最后得到原始问题的近似解,这类方法叫作分步法。交替方向法、预估-修正法,时间分裂法、因式分解法等都属此类。以二维抛物型方程定解问题:为例,用显式格式求解,时间步长受稳定性条件:的限制,用隐式格式,则归结为大型线性代数方程组,解起来比较麻烦。1955年皮斯曼-拉什福德提出交替方向隐式格式: (i=1,2,…,N-1,j=1,2,…,M-1;n=0,1,2,…) 为中心差分算符,第一步x方向取隐式,y方向取显式,第二步则相反。两步合成无条件稳定的格式。由于每一步可用追赶法求解,大大简化了解法。交替方向法出现后,进一步发展了各种形式的分步格式,并可推广到任何维数的方程或方程组的情形,困难在于边界条件的处理。有限差分方法已成为解各类数学物理问题的主要数值方法,也是计算力学中的主要数值方法之一。有些解偏微分问题的方法(如特征线法、直线法)实质上也是差分方法的一种形式。在固体力学中,有限元方法出现以前,主要采取差分方法;在流体力学中,差分方法仍然是主要的数值方法。当然,对于某些具有复杂的几何形状及复杂的流动现象的实际问题,差分方法还有待进一步发展。

有限差分法的差分方法的发展和应用

6. 差分法的基本思想是什么?差分法和广义差分法的主要区别是什么?

广义差分法是一种新的微分方程数值解法。它兼有差分法的简单性和有限元法的高精度性,还具有保持质量守恒等良好性质。当前国际上在计算力学、计算物理等领域中流行的有限体元法是广义差分法的一些重要理论问题开展研究,同时探讨其实际应用。研究的结果建立了高次元广义差分法(包括二次元和三次元格式等)的最佳收合敛价估计;建立了高阶微分方程的非协调广义差分法及其最佳收敛价估计;得到广义差分解的12最佳阶敛性估计和超收敛性,证明广义差分法存在应力佳点;将广义差分法应用于非线性波研究,给出正则长波方程高次广差分格式,并对双孤立波碰撞过程进行数值模拟,取得良好的效果
广义差分法可以克服所有类型的序列相关带来的问题。一阶差分法是它的特例。

7. 差分的差分定义

差分:difference差分,又名差分函数或差分运算,是数学中的一个概念。它将原函数f(x) 映射到f(x+a)-f(x+b) 。差分运算,相应于微分运算,是微积分中重要的一个概念。差分的定义分为前向差分和逆向差分两种。在社会经济活动与自然科学研究中,我们经常遇到与时间t有关的变量,而人们往往又只能观察或记录到这些变量在离散的t时的值。对于这类变量,如何去研究它们的相互关系,就离不开差分与差分方程的工具。微积分中的微分与微分方程的工具,事实上来源于差分与差分方程.因此差分与差分方程更是原始的客观的生动的材料。读者熟悉等差数列:a1 a2 a3……an……,其中an+1= an + d( n = 1,2,…n )d为常数,称为公差, 即 d = an+1 -an , 这就是一个差分, 通常用D(an) = an+1- an来表示,于是有D(an)= d , 这是一个最简单形式的差分方程。定义. 设变量y依赖于自变量t ,当t变到t + 1时,因变量y = y(t)的改变量D y(t)= y(t+1) - y(t)称为函数y(t)在点t处步长为1的(一阶)差分,常记作D yt= yt+1- yt ,简称为函数y(t)的(一阶)差分,并称D为差分算子。差分具有类似于微分的运算性质。 函数的前向差分通常简称为函数的差分。对于函数f(x),如果在等距节点:则称Δf(x),函数在每个小区间上的增量y(k+1)-yk为f(x)的一阶前向差分。在微积分学中的有限差分(finite differences),前向差分通常是微分在离散的函数中的等效运算。差分方程的解法也与微分方程的解法相似。当是多项式时,前向差分为Delta算子,一种线性算子。前向差分会将多项式阶数降低1。 对于函数f(xk),一阶逆向差分为Δf(xk)=f(xk)−f(xk−1)。备注:差分方程:difference equations

差分的差分定义

8. 有限差分法

有限差分法是以差分原理为基础的一种数值计算法。它用各离散点上函数的差商来近似替代该点的偏导数,把要解的边值问题转化为一组相应的差分方程。然后,解出差分方程组(线性代数方程组)在各离散点上的函数值,便得边值问题的数值解。
现以二维等步长差分格式为例,说明有限差分法的原理和方法步骤。
1.区域离散化,作网格剖分
如图1-4-1所示,用平行于坐标轴的两组直线族将地下划分成正方形网格,相邻两坐标线的距离为h,则任一点的x、z坐标为

图1-4-1 二维等步长正方形网络


地电场与电法勘探

每个正方形为一单元,其边长h称为步长,网格的交点称为节点。任一节点的坐标(x,z)可表示为(ih,kh),或简化为(i,k),用阶梯状折线代替原来的曲线段。在边界线以内的节点称为内节点,边界上的节点称为边界节点。
2.微分方程离散化,构组差分方程
某一内节点(i,k)处的电位为U(i,k),由于h很小,可将节点(i,k)四周的电位在节点处展成泰勒级数:

地电场与电法勘探

式中Ux,Uxx,……和Uz,Uzz,……分别表示U对x和z的一阶导数、二阶导数等。将前两个式子相加,并且忽略h的四次项与更高次项,经整理可得:

地电场与电法勘探

同理得:

地电场与电法勘探

将上述Uxx和Uzz代入含源分区均匀岩石中位函数U所满足的微分方程(1-4-16)的第二式,即得二维函数U(x,z)的差分方程:

地电场与电法勘探

对于无源分区均匀介质,位函数U(x,z)所满足的微分方程(1-4-17)的差分方程为

地电场与电法勘探

3.线性方程组的形成与求解
对于边界节点,其相应的差分方程可根据边界条件给出。全部结点所建立差分方程(1-4-18)和(1-4-19)的总和可分别写成以下矩阵形式:

地电场与电法勘探

和

地电场与电法勘探

〔A〕是方程组的系数矩阵,它是与电阻率分布有关的函数;{U}是电位U的列向量,其分量为所有节点上的电位;{F}是常向量。当给定电阻率分布及边界条件后,解线性方程(1-4-20)和(1-4-21),便可求得电位的空间分布。
电位{U}值的计算精度与步长h的大小有很大关系。一般说来,网格划分越细,即h值越小,{U}值与理论值就越接近。但是此时节点数目也急剧增加,因而所需的计算机内存和计算时间也就会增大。解决计算速度与精度这一矛盾的较好方法是采用变步长,即在近区将网格分得密些,远区影响较小可分得稀些。