基于煤层压裂模拟的水饱和煤样单轴力学试验研究

2024-05-09 03:04

1. 基于煤层压裂模拟的水饱和煤样单轴力学试验研究

颜志丰1 琚宜文1 侯泉林1 唐书恒2
基金项目:国家自然科学基金项目(No.41030422;40972131);国家重点基础研究发展规划(973)课题(No.2009CB219601);国家科技重大专项课题(2009ZX05039-003);中国科学院战略性先导科技专项课题(XDA05030100);河北工程大学博士基金课题。
作者简介:颜志丰,1969年生,男,河北邯郸人,博士后,长期从事能源地质和构造地质研究。Email:yanzf@gucas.ac.cn。
(1.中国科学院研究生院地球科学学院 北京 1000492.中国地质大学(北京)能源学院 北京 100083)
摘要:为模拟研究煤储层水力压裂效果,对煤样进行了饱水条件下的常规单轴压缩试验和声发射测试。对结果进行分析表明:在常规单轴压缩条件下,煤在平行层面上其力学性质具有方向性差异,平行面割理方向的单轴极限抗压强度要比垂直面割理方向的单轴极限抗压强度大得多,其弹性模量也大得多。煤样在垂直面割理方向弹性模量E随着单轴极限抗压强度σc的增加而增加,相关性较高,平行面割理方向弹性模量E随着抗压强度的增高而增高,但离散性较大。在单轴压缩条件下煤样变形破坏表现出的全应力—应变曲线形态大体可以概括为3种类型。
关键词:单轴压缩试验力学性质各向异性饱和含水率割理
Uniaxial Mechanical Test of Water-saturated Coal Samples in Order to Simulate Coal Seam Fracturing
YAN Zhifeng1 JU Yiwen1 HOU Quanlin1 TANG Shuheng2
(1.College of Earth Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 2.School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083 China)
Abstract: In order to simulate effect of hydraulic fracturing in coal reservoir,conventional uniaxial compres- sion test and acoustic emission test on the water-saturated coal samples were hold. The results showed that the me- chanical properties in parallel to the level of coal have directional difference. Under the conditions of conventional uniaxial compression. The uniaxial limit compressive strength in direction parallel to the face cleat is much larger than it in the vertical, so is the elastic modulus. The elastic modulus of coal increased with the increasing of com- pressive strength, however it is higher correlation in the direction of vertical face cleat, but a larger dispersion in parallel. The complete stress-strain curve shape showed by deformation of coal samples under uniaxial compression can be roughly summarized as 3 types.
Keyword: uniaxial compression test; mechanical properties; Anisotropy; saturated water content; cleat
1 前言
煤层气是储存于煤层内的一种非常规天然气,其中CH4含量多数大于90%,是一种优质洁净的气体能源(单学军,2005)。我国煤层气资源十分丰富,根据新一轮全国煤层气资源评价结果,在全国19个主要含煤盆地,适合煤层气勘探的埋深300~2000m范围内,预测煤层气远景资源量为36.8万亿m3。煤层气主要是以吸附状态存在于煤层内,也有少量以游离状态存在于孔隙与裂缝中(Smith D M,1984)。就孔隙结构而言,煤的孔隙结构可分为裂缝性孔隙和基岩孔隙。人们又习惯地把煤岩中的内生裂缝系统称为割理。其中面割理连续性较好,是煤中的主要裂隙,端割理是基本上垂直于面割理的裂缝,只发育在两条面割理之间,把基岩分割成一些长斜方形的岩块体(李安启,2004)。
渗透率高的煤层产气量往往较高,而低渗透率的煤层产气量较低。水力压裂改造措施是国内外煤层气井增产的主要手段。而我国的煤层气储层普遍属于低渗透煤储层,研究表明:我国煤层渗透率大多小于50×10-3μm2(张群,2001)。因此,目前国内的煤层气井采用最广泛的完井方法是压裂完井,煤层和砂岩的岩性特征有很大的区别,压裂施工中裂缝在煤层中的扩展规律与在砂岩中的扩展规律也不相同,为了解煤层的压裂特征和压裂效果就需要对煤层压裂进行模拟研究,要进行模拟研究就需要研究煤岩的力学性质。
通过试验研究煤岩的力学性质,发现煤岩具有尺寸效应——即煤岩的尺寸对试验结果具有影响,Daniel和Moor在1907年就指出(Daniels J,1907):小立方体的屈服强度高于大立方体,而且当底面积保持常数时,随着试块高度的增加,其屈服强度降低。研究过煤岩尺寸效应的还有Bunting(Bunting D.1911)。Hirt和Shakoor(Hirt A M,1992),Med-hurst和Brown(Medhurst T P,Brown E T.A,1998),吴立新(1997),刘宝琛(1998),靳钟铭(1999)等。
由于单轴力学性质试验结果受尺寸、形状等因素制约,因此进行单轴岩石压缩试验时,对试验样品的加工有一定的要求,通常试件做成圆柱体,一般要求圆柱体直径48~54mm,高径比宜为2.0~2.5,试件端面光洁平整,两端面平行且垂直于轴线。
2 试验方法说明
在单轴压缩应力下,煤块产生纵向压缩和横向扩张,当应力达到某一量级时,岩块体积开始膨胀出现初裂,然后裂隙继续发展,最后导致破坏(闫立宏,2001)。为避免其他因素的影响,采用同一试样,粘贴应变片,在测试强度过程中同时用电阻应变仪测定变形值。
2.1 煤样制备和试验方法
实验煤样采自沁水盆地南部晋煤集团寺河煤矿3#煤层。煤样制备和试验方法参照中华人民共和国行业标准《水利水电工程岩石试验规程(SL264-2001)》(中华人民共和国水利部.2001),以及国际岩石力学学会实验室和现场试验标准化委员会提供的《岩石力学试验建议方法》(郑雨天,1981)进行的。沿层面方向在大煤块上钻取直径为50mm,高为100mm的圆柱样,煤样轴向均平行煤岩层面。为研究平行面割理和垂直面割理方向煤岩力学性质的差异,制备了两组煤样。一组煤样平行面割理方向,样品数10个,编号DP1-DP10;另一组煤样垂直面割理方向,样品数10个,编号DC1-DC10。试验前对煤样进行了饱水处理(48h以上)。单轴实验设备为WEP-600微机控制屏显万能试验机。记录设备为30吨压力传感器,7V14程序控制记录仪。数据处理设备为联想杨天E4800计算机及相应的绘图机、打印机。试验工作进行前测试了煤样的物理性质,对试件进行了饱水处理。进行单轴压缩试验的煤样条件见表1。
表1 煤样条件


2.2 计算公式
单轴抗压强度计算公式

中国煤层气技术进展:2011年煤层气学术研讨会论文集

式中:σc为煤岩单轴抗压强度,MPa;Pmax为煤岩试件最大破坏载荷,N;A为试件受压面积,mm2。
弹性模量E、泊松比μ计算公式:

中国煤层气技术进展:2011年煤层气学术研讨会论文集

式中:E为试件弹性模量,GPa;σc(50)为试件单轴抗压强度的50%,MPa;εh(50)为σc(50)处对应的轴向压缩应变;εd(50)为σc(50)处对应的径向拉伸应变;μ为泊松比。
3 试验结果与分析
3.1 加载轴线方向对煤块的抗压强度σc和弹性模量有显著的影响。
试验结果数据见表2。从表中可以看出,平行面割理方向的单轴极限抗压强度要比垂直面割理方向的单轴极限抗压强度大得多,其弹性模量也大得多,抗拉强度平均值高出2/3,而弹性模量更是高出一倍。这说明即使在平行煤的层面上其力学性质也具有方向性,不同方向上其值大小有显著差异。
表2 煤样单轴抗压强度试验结果


注:DP9沿裂隙面破裂,没有参与力学性质分析。
煤是沉积岩,小范围内同一煤分层在形成环境、形成时代上都是相同的,可以认为小范围内在平行煤的层面上,煤的组分、煤质等是均匀的,变化非常小,所以沿平面上力学性质的差异与煤质、组分等关系不大。推测其原因是由于在地史上受到构造应力的影响,构造应力具有方向性,在不同的方向上其大小不同,使煤在不同的方向上受到地应力作用的大小程度也不同,导致煤在不同方向上结构有所不同,从而表现出来在不同方向上力学性质的差异,在受力较大的方向上可能会表现出较大的强度。由于在构造力作用下沿最大主应力方向裂隙最容易发育,发育程度也应该较好,沿最小主应力方向上裂隙发育程度要差些。发育好的裂隙往往形成面割理,因而在平行面割理的方向上抗压强度和弹性模量都高,而在垂直面割理的方向上其值相对就会小些。
3.2 煤岩单轴极限抗压强度与其他性质之间的关系
由表2可知煤样的抗压强度离散性较大,影响因素是什么?煤的密度与含水状态对单轴抗压强度有什么影响?现分析如下:
图1-a表示了极限抗压强度σc与饱和密度ρw之间的关系。从图中可以看出,无论是C组、P组还是全部样品,随着饱和密度的增加,煤块的极限抗压强度都有增加的趋势,说明随着饱和密度的增加,抗压强度有增加的趋势。

图1 σc与其他性质之间的关系

图1-b表示极限抗压强度σc与饱和吸水率ωs之间的关系。从图中可以看出,C组样品随饱和吸水率的增加抗压强度有减少的趋势,而P组样品单轴抗压强度和饱和吸水率的相关性非常低,可以认为饱和吸水率对P组样品没有影响。由此可见,饱和吸水率的增高使垂直面割理方向的抗压强度降低,而对平行面割理方向的单轴极限抗压强度影响很小。
图1-c表示单轴极限抗压强度σc与弹性模量E之间的关系。从图中可以看出C组样品单轴极限抗压强度σc与弹性模量E之间具有明显的正相关性,即垂直于面割理方向的单轴极限抗压强度随着弹性模量的增加而增加,P组样品具有不明显的线性正相关,即平行于面割理方向的单轴极限抗压强度σc与弹性模量E的增加而增加,但离散性较大。
图1-d表示单轴极限抗压强度σc与泊松比μ之间的关系。从图中可以看出C组样品单轴抗压强度与泊松比之间具有较明显的负相关关系,也就是说垂直于面割理的单轴抗压强度随着泊松比的增高而降低;但是P组样品的相关性很低,即平行于面割理方向的单轴极限抗压强度σc与泊松比的变化无关。
3.3 弹性模量和其他性质之间的关系
图2-a表示弹性模量E与泊松比μ之间的关系。从图中可以看出C组样品、P组样品及全部样品相关性均不明显。说明弹性模量与泊松比之间的变化互不影响。

图2 弹性模量E与其他性质之间的关系

图2-b表示弹性模量E与饱和密度ρw之间的关系。从图中可以看出无论C组还是P组,样品弹性模量与饱和密度相关性非常弱,可以认为不相关。由此可见弹性模量不受饱和密度变化的影响。
图2-c表示弹性模量E与饱和吸水率ωs之间的关系。从图中可以看出C组样品弹性模量与饱和吸水率相关性较高,呈明显的负相关关系;但是P组样品的相关性却很低,几乎不相关。由于C组样品以垂直轴向的裂隙为主,在压力作用下煤样的变形等于煤岩本身的变形再加上水的变形,水是液体,在压力作用下很容易变形,在压力不变的情况下随着水含量的增加变形随之增大,而产生较大的轴向变形,导致C组的煤样随着含水量的增加弹性模量变小。而P组样品裂隙以平行轴向为主,尽管在饱水的情况下裂隙中完全充填了水,但由于水含量很少,承载压力的主要是煤岩本身,变形量也是由煤岩本身决定的,因此它与含水量关系不明显。
3.4 泊松比和其他性质之间的关系
由图3-a中可以看出C组样品、P组样品和全部样品的泊松比与饱和密度之间散点图均比较离散,相关性很低,也可以说它们不相关。
由图3-b中可以看出C组样品、P组样品和全部样品的泊松比与饱和吸水率之间相关性很低,可以认为它们不相关。
3.5 煤岩单轴压缩全应力—应变曲线类型
岩石试件从开始受压一直到完全丧失其强度的整个应力应变曲线称为岩石的全应力应变曲线(重庆建筑工程学院,1979)。大量岩石单轴压缩实验表明,岩石在破坏以前的应力应变曲线的形状大体上是类似的,一般可分为压密、弹性变形和向塑性过渡直到破坏这三个阶段。
煤是一种固体可燃有机岩石,由于成煤物质的不同及聚煤环境的多样化,煤的岩石组分、结构特征比较复杂。因此,在单轴压缩条件下煤样变形破坏机制及表现出的全应力—应变曲线形态多种多样,大体可以概括为3种类型。
3.5.1 迸裂型
应力—应变曲线压密阶段不明显,加速非弹性变形阶段很短,曲线主要呈现表观线弹性变形阶段直线,直到发生破坏,见图4-a。具有迸裂型全应力—应变曲线特征的煤样,通常均质性较好、强度较大、脆性较强,其抗压强度通常很高。煤样在整个压缩变形过程中,积聚了大量弹性应变能,而由于发生塑性变形而耗散的永久变形能相对较小。因此,当外部应力接近其极限强度而将要发生破坏时,煤岩内积聚的大量弹性应变能突然、猛烈地释放出来并发出较大声响,形成一个很高的声发射峰值。

图3 泊松比μ与饱和吸水率ωs之间的关系


图4 煤岩样品应力—应变关系曲线图

3.5.2 破裂型
应力较低时,出现曲折的压密阶段,当应力增加到一定值时,应力—应变曲线逐渐过渡为表观线弹性变形阶段;最后变为加速非弹性变形阶段,直到发生破坏,见图4-b。试件随荷载的增加,煤样受力结构逐渐发生变化,同时出现局部张性破坏,但整体仍保持完整,并在变形过程中也积聚了一定的弹性应变能。当外部应力接近其抗压强度,即煤岩发生加速变形时,煤岩中积聚的弹性应变能就突然释放,产生较高的声发射值,破坏时声发射强度又变得非常低。
3.5.3 稳定型
应力—应变曲线压密阶段不明显,表观线弹性变形阶段呈略微上凸的直线,加速非弹性变形阶段较长,见图4-c。试件随荷载的增加,煤样受力结构逐渐发生变化,同时出现局部张性破坏,并在变形过程积聚的弹性应变能释放,形成振铃计数率峰值,随后振铃计数率迅速降低,并在加速非弹性变形阶段开始时出现新的振铃计数率峰值,接近破坏时又出现一次振铃计数率峰值。破坏时声发射强度又变得非常低。
4 结论
通过上面对沁水盆地寺河煤矿3号煤力学试验,可以得出如下结论:
(1)煤岩单轴抗压强度和弹性模量等力学性质在平行煤层的平面上具有方向性差异,平行面割理方向的单轴极限抗压强度要比垂直面割理方向的单轴极限抗压强度大得多,其弹性模量也大得多。
(2)煤的极限抗压强度σc随着饱和密度ρw的增加而增加;极限抗压强度σc在垂直于面割理方向上随饱和吸水率ωs的增加而减少,而在平行面割理方向上与饱和吸水率无关;单轴极限抗压强度σc随着弹性模量E的增加而增加,在垂直面割理方向上相关程度较高,在平行面割理方向上离散性较大。单轴极限抗压强度σc在垂直面割理方向上随着泊松比μ增加而减小,而在平行面割方向上与泊松比无关。
(3)弹性模量E的变化不受泊松比变化的影响,同时也不受饱和密度的影响;垂直面割理方向弹性模量随着饱和吸水率ωs的增加而减小,而平行面割理方向弹性模量与饱和吸水率无关。
(4)泊松比μ的变化既不受饱和密度变化的影响,也不受饱和吸水率ωs变化的影响。
(5)在单轴压缩条件下煤样变形破坏表现出的全应力—应变曲线形态大体可以概括为3种类型:(1)迸裂型;(2)破裂型;(3)稳定型。
参考文献
单学军,张士诚,李安启等.2005.煤层气井压裂裂缝扩展规律分析.天然气工业,25(1),130~132
靳钟铭,宋选民,薛亚东等.1999.顶煤压裂的实验研究.煤炭学报,24(1),29~33
李安启,姜海,陈彩虹.2004.我国煤层气井水力压裂的实践及煤层裂缝模型选择分析.天然气工业,24(5),91~94
刘宝琛,张家生,杜奇中等.1998.岩石抗压强度的尺寸效应.岩石力学与工程学报,17(6),611~614
吴立新.1997.煤岩强度机制及矿压红外探测基础实验研究.北京:中国矿业大学.
闫立宏,吴基文.2001.煤岩单轴压缩试验研究.矿业安全与环保,28(2),14-16
张群,冯三利,杨锡禄.2001.试论我国煤层气的基本储层特点及开发策略.煤炭学报,26(3),230~235
郑雨天等译.1981.国际岩石力学学会实验室和现场标准化委员会:岩石力学试验建议方法.北京:煤炭工业出版社
中华人民共和国水利部.2001.水利水电工程岩石试验规程(SL264~2001).北京:地质出版社
重庆建筑工程学院,同济大学编.1979.岩体力学.北京:中国建筑工业出版社
Bunting D. 1911. Pillars in Deep Anthracite Mine. Trams. AIME,(42), 236~245
Daniels J, Moore L D. 1907. The Ultimate Strength of Coal. The Eng. and Mining,(10), 263~268
Hirt A M,Shakoor A. 1992. Determination of Unconfined Compressive strength of Coal for pillar Design. Mining Engineer- ing, (8), 1037 ~1041
Medhurst T P, Brown E T. 1998. A study of the Mechanical Behavior of Coal for Pillar Design. Int. J. Rock. Min. Sci.35 (8), 1087~1104
Smith D M, Williams F L.Diffusional effects in the recovery of methane from coalbeds. SPE, 1984: 529~535.SPE,1984:529~535

基于煤层压裂模拟的水饱和煤样单轴力学试验研究

2. 单轴压缩煤岩变形破裂应力场的数值模拟

6.2.1 单轴压缩煤岩变形破裂过程的力学特性
(1)受载煤岩变形破裂特性
煤岩材料在不同压应力作用下表现出的非线性变形包括:初始的压实、近线性弹性变形、初始应变硬化、应变软化、膨胀和局部弱化,这些特性主要来自于岩石微结构在不同应力状态下的演化,原有裂纹的成核和扩展被视为岩石变形核失效的主要机制。
根据岩石的三轴压缩实验过程曲线(图6.4),岩石受力变形破坏过程可分为以下几个阶段:
1)非线性压密阶段(OA):岩石内的天然裂隙在外力作用下逐渐闭合,表现为岩石试件刚度增大,压缩变形具有非线性特征。
2)弹性变形阶段(AB):压密后岩石进入弹性阶段,应力与应变成正比关系。
3)加速非弹性变形阶段(BC):岩石中开始出现微破裂,变形加速,在该阶段的后期,由于破裂造成的应力集中效应使得即使保持恒载,岩石破裂仍将继续发展,即发生流变。
4)破裂及发展阶段(CD):该阶段由于大的裂隙互相汇合、贯通,即岩石内部的微破裂面发展为贯通性破坏面,最终导致岩体失稳而破坏。

图6.4 岩石的三轴压缩实验过程曲线


图6.5 岩石受载内部裂纹演化过程曲线

岩石单轴压缩与三轴压缩过程基本上一致,由于没有围压作用,应力峰值小于三轴情况下的峰值。岩石变形与破坏过程实质上是载荷作用下其内部裂纹演化的过程,可用图6.5简单表示。
(2)单轴压缩煤岩应力分布特点
煤岩体的单轴压缩实验主要是测定煤岩的力学性质,如单轴抗压强度、弹性模量和泊松比等。煤岩体在单轴压缩过程中,其测定结果的准确性和内部应力分布主要受煤岩样品的试件形状及其尺寸、端面条件等因素影响。一般采用圆柱形或正方形试件来进行单轴抗压强度的测定,经实验研究,对于圆柱形试件其尺寸取为φ50 mm×100 mm,能使其内部的应力分布均匀,并能保证煤岩样品破坏面不受压力机上承压板附加的横向约束而可自由地通过试件的全断面。而试件端面的不平整或端面与承压板之间不密切接触,都可能使试件处于偏心或局部受力状态,实验表明,即使在正常受力状态下,试件端面受到的轴向压应力的分布也是不均匀的,其中心部分的轴向压应力比两侧的轴向压应力要大,如图6.6(a)所示。同时,试件端面与压力机之间的摩擦效应会产生一个横向压应力,在两端面表现最为明显,在中部则减小,于是使单轴压缩时煤岩样品内应力分布如图6.6(b)所示。如果消除了这种端面效应,即横向压应力作用减弱或消除,于是试件中的切向拉应力和径向拉应力就会相对增大,则煤岩试件的破裂就会沿着轴向压应力的方向发展,从而导致煤岩样品呈劈裂形破坏。

图6.6 单轴压缩煤岩试件的应力分布

(3)单轴压缩煤岩体内应力应变关系分析
岩石试件在进行单轴压缩时,其端面及内部的应力分布与试件的尺寸、形状和试件端面条件有关。经过实验研究,对于正方柱状岩石试件的几何尺寸一般取高径比为(2~2.5),对于圆柱状岩石试件高径比一般为(2~3),因此在实验时把试件做成高为100 mm直径为50 mm的圆柱体。这样有利于其内部的应力分布均匀,并能保证岩石试件破坏面不受材料机上承压板附加的横向约束而可自由通过试件的全断面。
对于煤体的单轴受压变形及破裂机制,实验研究结果表明,煤体的宏观破坏形态有五种,如图6.7。因煤体中大量宏微观裂隙缺陷的存在,煤体的单轴受压破坏不是单纯的压应力所致,而是通过剪切力和拉应力复合引起的。

图6.7 煤岩体的宏观破坏形态

何学秋等学者[180]经过实验研究及现场测定认为,许多固体材料如煤岩等在稳定载荷下会存在流变现象。其蠕变曲线ε(t)可以分成三个阶段:第一阶段的特征是应变速率逐渐减小;第二阶段为定常蠕变,即应变速率不变;第三阶段为加速蠕变直至破坏。煤岩体的蠕变破坏的前提条件是其所受应力必须大于煤岩体的屈服强度临界值,即σ>σl(临界值)时;当σ<σl时,蠕变曲线ε(t)趋于一个常数,且其变形速度趋于0。图6.8,6.9分别为蠕变曲线ε(t)和应力-应变关系曲线σ(ε)。

图6.8 三向常载荷下ε(t)的曲线


图6.9 应力-应变关系曲线

6.2.2 应力场数值模拟分析
(1)应力场数值模拟目的及模型构建
进行单轴压缩煤岩体内应力场数值模拟的目的是:
1)确定煤岩体内应力场的分布规律;
2)分析影响应力分布的各种因素其影响程度(如煤岩体K、G、内摩擦力C和内摩擦角φ等),为分析单轴压缩煤岩体变形破裂电磁辐射信号与其影响因素之间的关系打下基础;
3)通过改变煤岩体的力学参数、单轴压缩时的加载速率等影响因素,通过数值模拟来研究这些因素与煤岩体内部应力分布的变化,为后面应力场和电磁辐射场的耦合计算打下基础;
4)现场更好地应用非接触电磁辐射方法预测预报煤岩动力灾害现象提供指导。
本章利用上面所叙述的数值方法——FLAC3D(Lagrangian element method)法,对煤岩受载变形时的变化规律进行三维的数值模拟,以考察不同力学参数、不同加载速率下煤岩内部各点的应力、应变及变形速率的变化规律。
本章构建了实验室煤岩单轴压缩模型,简称为ModelⅠ,下面对其进行描述。
根据前面对煤岩体单轴压缩应力场的理论分析和应力分布特点的研究,煤岩单轴压缩过程中应力应变分布规律与煤岩力学性质、加载特性有关,因此模型试验方案根据煤岩种类和加载速率设计如表6.1所示。ModelⅠ又细分为15种情况。其材料力学性质如表6.2。煤岩本构模型选取摩尔库仑剪切破坏与拉破坏复合的应变硬化软化模型(SS模型)。其软化参数如表6.3。
(2)单轴压缩煤岩体单元应力分布的特点
根据前面应力场数值模拟方法的分析与单轴压缩计算方案的设计,本文对不同强度、不同加载速率煤和泥岩、砂岩进行了三维FLAC分析与应力场数值模拟计算,图中注释:单元1在煤岩样品的顶部的圆心;单元701在圆柱体煤岩样品中部的圆心;单元1906在中部的径向中间;单元2000在底部位置外边缘;v1、v2等代表加载速率,其值如表6.1;z=45 mm代表距离样品上表面45 mm处的横截面;v2.1300-45代表加载速率为v2,迭代至1300步时z=45 mm处的横截面。通过对计算结果的分析,可以得到单轴压缩煤岩体单元应力分布的几个特点:
表6.1 试验方案表


表6.2 单轴压缩煤岩力学性质表


表6.3 单轴压缩煤岩软化力学参数表


1)煤岩体各单元的应力均随着加载时间的延长而发生变化,其变化规律与实验室的研究结果呈现出一致性,即在达到极限强度前是逐渐增加的,且一般是线性关系,符合线弹性行为,当达到应力峰值后急剧降低;如图6.10~6.13所示,对于中硬煤的701单元、1901单元和软煤的1、701单元其最大主应力随着加载时间的变化规律就是如此。
2)煤岩体中各单元的位置不同,导致在加载步相同时的应力是不同的,由于应力是从煤岩样品的上部即加载端部开始逐渐向下部传递的,因而下面单元应力总是有一个滞后,也就是说当上面单元达到应力峰值时进入塑性软化区甚至破裂,下部单元有可能还没有达到应力峰值,这种现象与实验室实际煤岩单轴压缩中的裂纹从上部逐渐向下扩展一直到破裂是相对应的。如图6.14和图6.15为硬煤在加载到第2500步时单元1(在煤岩最顶部的中心位置)和单元2000(在煤岩样品的最底部外围)的主应力随加载时间的变化关系,可见单元1已经达到应力峰值并开始急剧降低,而单元2000的应力还在继续增加;图6.16和图6.17为泥岩的情况,也是呈现这种特点。

图6.10 中硬煤(v2)701单元应力随时间的变化


图6.11 中硬煤(v2)1901单元应力随时间的变化


图6.12 软煤(v2)1单元应力随时间的变化


图6.13 软煤(v2)701单元应力随时间的变化


图6.14 硬煤(v2)1单元应力随时间的变化


图6.15 硬煤(v2)2000单元应力随时间的变化

3)煤岩体中各层上的单元应力分布在各个加载阶段呈现不同的特点,对于同样的一个监测横截面,在不同的加载时间其应力分布发生了很大的变化,基本上是随着不断迭代(加载)应力先是逐渐增加,然后达到单元的极限强度后发生塑性软化,最后发生拉破裂。在加载前期阶段,各层单元应力分布总体呈现出中间大于周围,如图6.18和图6.19所示:当加载速率为12时,迭代至1300步时,在z=45 mm处的最大主应力是压应力,总体呈现出中间大于周围,均在4.77~6.24 MPa之间,分布内部稍小于周围;在加载后期,如图6.20和图6.21,从图中可以看出:当加载速率为12时,迭代至2900步时,在z=45 mm处的最大主应力有压应力也有拉应力,变化很大,数值不大,压应力最大仅为0.0497 MPa,拉应力最大为450Pa,说明大部分单元已经进入塑性破裂阶段。
4)数值模拟时改变煤岩的强度(如体积模量、剪切模量),发现煤岩的强度不同,即使是在同样加载速率和加载时间下,其应力分布也是不同的,下面章节将对此作具体的分析和研究。
5)数值模拟时改变加载的速率,发现加载速率不同,即使是在同样煤岩强度和加载时间下,其应力分布也是不同的,下面章节也将对此作具体的分析和研究。

图6.16 泥岩(v2)401单元应力随时间的变化


图6.17 泥岩(v2)2000单元应力随时间的变化


图6.18 中硬煤(v2.1300-45)最大主应力等值线图


图6.19 中硬煤(v2.1300-45)最大主应力立体图


图6.20 中硬煤(v2.2900-45)最大主应力等值线图


图6.21 中硬煤(v2.2900-45)最大主应力立体图

(3)煤岩强度对单元应力分布的影响
为了考察煤岩强度对单元应力分布的影响,将软煤、中硬煤和硬煤在同一加载速度下的应力变化计算结果进行分析,取定v=8时,下面是分析结果。
从图6.22和图6.23可看出:对于软煤,当加载速率为8时,迭代至2100步,在z=45 mm处的最大主应力为0.98~1.01 MPa,数值不大且变化也不大。对于中硬煤,如图6.24和6.25所示,当加载速率、加载时间、观测单元面均与软煤相同时,其最大主应力则为6.07~6.23 MPa,也呈现出中间大于周围的趋势,数值比软煤的大。如图6.26和6.27所示,当加载速率为8时,迭代至2100步时,对于硬煤,在z=45 mm处的最大主应力主要集中于中心,最大为13.7 MPa,在周围均已经很低,说明这个面的大部分已经破裂。通过实验研究表明,不同类型的煤岩在单轴压缩时电磁辐射信号的变化趋势是一致的,但幅值与脉冲数其数值却有较大的差别,这可能是煤岩强度不同所致。

图6.22 软煤(v1.2100-45)最大主应力等值线图


图6.23 软煤(v1.2100-45)最大主应力立体图


图6.24 中硬煤(v1.2100-45)最大主应力等值线图


图6.25 中硬煤(v1.2100-45)最大主应力立体图


图6.26 硬煤(v2.2100-45)最大主应力等值线图


图6.27 硬煤(v2.2100-45)最大主应力立体图

(4)加载速率对单元应力分布的影响
为了考察数值模拟时加载速率单轴压缩煤岩体内各单元应力分布的影响,下面将通过对中硬煤、砂岩在不同加载速度下的应力变化计算结果的分析来具体阐述。如图6.28~6.31,对于中硬煤,当加载速率为10,加载时间为1300步时,在z=45 mm处的最大主应力是压应力,总体呈现出中间大于周围,但数值变化不大,均在3.98~4.43 MPa之间,压应力最大值仅为4.43 MPa。当加载速率为12时,最大主应力也是压应力,总体趋势也相同,但是应力值确实有所增大,均在4.77~6.24 MPa之间。从微观和细观机理上分析,即加载速率的增加使单元之间的应力传递速度也加快,应变速率增加,从而导致应力变化加快,这相当于增大了煤岩体的强度和弹性模量。如图6.32~6.33,砂岩的模拟结果也有利地说明了加载速率对应力场的影响。

图6.28 中硬煤(v1.1300-45)最大主应力等值线图


图6.29 中硬煤(v1.1300-45)最大主应力立体图


图6.30 中硬煤(v2.1300-45)最大主应力等值线图


图6.31 中硬煤(v2.1300-45)最大主应力立体图


图6.32 砂岩(v1)1906单元应力随时间的变化


图6.33 砂岩(v3)1906单元应力随时间的变化