关于斐波那契数列中的规律.

2024-05-18 09:03

1. 关于斐波那契数列中的规律.

后一个数是前两个数的和。繁分数分母总是大于1,所以的值总是小于1
而分子总是取先前的分母,除了第一次分子分母均是1时,值等于1/2,后来的值均大于1/2
而每次计算繁分数时,繁分数分母中的分母总是不变,分子总是先前分子与分母之和
这就完全符合斐波那契数列的展开规律

那么这个最简单的无穷连分数的值是多少呢?
也就是斐波那契数列连续两项之比的极限是多少呢?
设:x=1/(1+1/(1+1/(1+...)))
显然有:x=1/(1+x)
即:x^2+x-1=0
x=(√5-1)/2=0.618...(舍去负值)
这就是黄金分割比例,也是斐波那契数列连续两项之比的极限
这就是楼主所说的:“越来越接近黄金比例”的原因。
所谓“随n的增加,两数之间的差距越来越小”,其实就是越来越接近极限嘛。

那为什么“任意两数不断相加”都这样呢?
黄金分割比例其实是个中外比的问题:
所谓中外比,就是分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项。
如果把较长的一段设为x,则较短的一段为1-x
所以,x^2=1*(1-x) 【其中“1”表示全线段】
即:x^2+x-1=0,与上面解最简单的无穷连分数的方程完全一致
注意这里的全线段用1来表示,这就是说求黄金分割比例与线段的实际长度无关
同样道理,对于斐波那契数列的展开,如果考察的是前后两项的比例
那么,从哪两个数开始相加,就是无所谓的了
因为总是两个数中的大数与两数和之比,这与黄金分割的中外比完全是一个意思
况且除了第一个比值还不是与“和”比之外,其他所有比值总是在0.5和1之间
如果开始的两个数不相同,那么:m,n,m+n,m+2n,2m+3n,3m+5n,...
可见还是按斐波那契数列规律在展开,当然这是大致理解,严格的证明要看相关资料
再想想看,如果斐波那契数列最开始两个数是1和2呢?不同了吧。
还不是一样展开,除少了第一项外,其他并没有什么不同。
如果开始的两个数相同,那么:m,m,2m,3m,...其实就是斐波那契数列,
只是每个数差个m倍而已,完全不影响连续两项之比的值。而且从第3项开始,a前的系数恰好构成斐波那契数列;
从第2项开始,b前的系数恰好构成斐波那契数列;
于是,由斐波那契数列通项公式有:
第n个数a前的系数=(1/√5)*{[(1+√5)/2]^(n-2) - [(1-√5)/2]^(n-2)}
第n个数b前的系数=(1/√5)*{[(1+√5)/2]^(n-1) - [(1-√5)/2]^(n-1)}
所以第n个数(n≥3)为:
(1/√5)*{[(1+√5)/2]^(n-2) - [(1-√5)/2]^(n-2)}*a+(1/√5)*{[(1+√5)/2]^(n-1) - [(1-√5)/2]^(n-1)}*b。

关于斐波那契数列中的规律.

2. 斐波那契数列的特性

 从第二项开始,每个奇数项的平方都比前后两项之积少1,每个偶数项的平方都比前后两项之积多1。如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如从数列第二项1开始数,第4项5是奇数,但它是偶数项,如果认为5是奇数项,那就误解题意,怎么都说不通)证明经计算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1) 斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越数e(可以推出更多),黄金矩形、黄金分割、等角螺线,十二平均律等。斐波那契数与植物花瓣3………………………百合和蝴蝶花5………………………蓝花耧斗菜、金凤花、飞燕草、毛茛花8………………………翠雀花13………………………金盏和玫瑰21………………………紫宛34、55、89……………雏菊斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。 将杨辉三角左对齐,成如图所示排列,将同一斜行的数加起来,即得一数列1、1、2、3、5、8、……公式表示如下:f⑴=C(0,0)=1。f⑵=C(1,0)=1。f⑶=C(2,0)+C(1,1)=1+1=2。f⑷=C(3,0)+C(2,1)=1+2=3。f⑸=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。f⑹=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。F⑺=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。……F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m2),每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为多少?分析:由于形成三角形的充要条件是任何两边之和大于第三边,因此不构成三角形的条件就是存在两边之和不超过另一边。截成的铁丝最小为1,因此可以放2个1,第三条线段就是2(为了使得n最大,因此要使剩下来的铁丝尽可能长,因此每一条线段总是前面的相邻2段之和),依次为:1、1、2、3、5、8、13、21、34、55,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时n达到最大为10。我们看到,“每段的长度不小于1”这个条件起了控制全局的作用,正是这个最小数1产生了斐波那契数列,如果把1换成其他数,递推关系保留了,但这个数列消失了。这里,三角形的三边关系定理和斐波那契数列发生了一个联系。在这个问题中,144>143,这个143是斐波那契数列的前n项和,我们是把144超出143的部分加到最后的一个数上去,如果加到其他数上,就有3条线段可以构成三角形了。影视作品中的斐波那契数列斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的《达芬奇密码》里它就作为一个重要的符号和情节线索出现,在《魔法玩具城》里又是在店主招聘会计时随口问的问题。可见此数列就像黄金分割一样流行。可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究。在电视剧中也出现斐波那契数列,比如:日剧《考试之神》第五回,义嗣做全国模拟考试题中的最后一道数学题~在FOX热播美剧《Fringe》中更是无数次引用,甚至作为全剧宣传海报的设计元素之一。

3. 斐波那契数列的性质

斐波那契数列的性质有:《模除周期性》、《黄金分割》、《平方与前后项》、《求和》、《隔项关系》、《两倍项关系》、《尾数循环》。

性质一:模除周期性,数列的数模除某个数的结果会呈现一定周期性,因为数列中的某个数取决与前两个数,一旦有连着的两个数的模除结果分别等于第0 第一项的模除结果,那麽代表着一个新的周期的的开始,如果模除n,则每个周期中的元素不会超过n×n;
性质二:黄金分割,随着i的增大Fi/Fi-1 接近于0。618。
性质三:平方与前后项从第二项开始,每个奇数项的平方都比前后两项之积多一,每个偶数项的平方比前后两项之积少一。
性质四:斐波那契数列的第n+2项代表了集合{1,2,。。。n}中所有不包含相邻正整数的子集的个数。
性质五:求和。
性质六:隔项关系,f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]。
性质七:两倍项关系,f(2n)/f(n)=f(n-1)+f(n+1)。
性质八:尾数循环,个位数:周期60,最后两位:300,最后三位:1500。

斐波那契数列简介。
斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……
在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用。
为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

斐波那契数列的性质

4. 关于斐波那契数列

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……
  这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}(又叫“比内公式”,是用无理数表示有理数的一个范例。)(√5表示根号5)

5. 斐波那契数列的原理是什么?


斐波那契数列的原理是什么?

6. 斐波那契数列如何理解?


7. 斐波那契数列的定义

斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368特别指出:第0项是0,第1项是第一个1。这个数列从第2项开始,每一项都等于前两项之和。斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。

斐波那契数列的定义

8. 斐波那契数列 关系

F(n+2)=F(n+1)+f(n)
F(1)=F(2)=1