如何用python和scikit learn实现神经网络

2024-05-02 03:53

1. 如何用python和scikit learn实现神经网络

1:神经网络算法简介
2:Backpropagation算法详细介绍
3:非线性转化方程举例
4:自己实现神经网络算法NeuralNetwork
5:基于NeuralNetwork的XOR实例
6:基于NeuralNetwork的手写数字识别实例
7:scikit-learn中BernoulliRBM使用实例
8:scikit-learn中的手写数字识别实例

一:神经网络算法简介
1:背景
以人脑神经网络为启发,历史上出现过很多版本,但最著名的是backpropagation
2:多层向前神经网络(Multilayer  Feed-Forward Neural Network)

多层向前神经网络组成部分
输入层(input layer),隐藏层(hiddenlayer),输出层(output layer)

每层由单元(units)组成
输入层(input layer)是由训练集的实例特征向量传入
经过连接结点的权重(weight)传入下一层,一层的输出是下一层的输入
隐藏层的个数是任意的,输出层和输入层只有一个
每个单元(unit)也可以被称作神经结点,根据生物学来源定义
上图称为2层的神经网络(输入层不算)
一层中加权的求和,然后根据非线性的方程转化输出
作为多层向前神经网络,理论上,如果有足够多的隐藏层(hidden layers)和足够大的训练集,可以模拟出任何方程

3:设计神经网络结构
3.1使用神经网络训练数据之前,必须确定神经网络层数,以及每层单元个数
3.2特征向量在被传入输入层时通常被先标准化(normalize)和0和1之间(为了加强学习过程)
3.3离散型变量可以被编码成每一个输入单元对应一个特征可能赋的值
比如:特征值A可能取三个值(a0,a1,a2),可以使用三个输入单元来代表A
如果A=a0,那么代表a0的单元值就取1,其他取0
如果A=a1,那么代表a1的单元值就取1,其他取0,以此类推
3.4神经网络即可以用来做分类(classification)问题,也可以解决回归(regression)问题
3.4.1对于分类问题,如果是2类,可以用一个输入单元表示(0和1分别代表2类)
如果多于两类,每一个类别用一个输出单元表示
所以输入层的单元数量通常等于类别的数量 
3.4.2没有明确的规则来设计最好有多少个隐藏层
3.4.2.1根据实验测试和误差,以及准确度来实验并改进
4:算法验证——交叉验证法(Cross- Validation)


解读: 有一组输入集A,B,可以分成三组,第一次以第一组为训练集,求出一个准确度,第二次以第二组作为训练集,求出一个准确度,求出准确度,第三次以第三组作为训练集,求出一个准确度,然后对三个准确度求平均值
二:Backpropagation算法详细介绍

1:通过迭代性来处理训练集中的实例

2:输入层输入数
经过权重计算得到第一层的数据,第一层的数据作为第二层的输入,再次经过权重计算得到结果,结果和真实值之间是存在误差的,然后根据误差,反向的更新每两个连接之间的权重
3:算法详细介绍
输入:D : 数据集,| 学习率(learning rate),一个多层前向神经网络
输出:一个训练好的神经网络(a trained neural network)
3.1初始化权重(weights)和偏向(bias):随机初始化在-1到1之间,或者-0.5到0.5之间,每个单元有一个偏向
3.2对于每一个训练实例X,执行以下步骤:
3.2.1:由输入层向前传送,输入->输出对应的计算为:


计算得到一个数据,经过f 函数转化作为下一层的输入,f函数为:
3.2.2:根据误差(error)反向传送
对于输出层(误差计算):  Tj:真实值,Qj表示预测值

对于隐藏层(误差计算):  Errk 表示前一层的误差, Wjk表示前一层与当前点的连接权重

权重更新:  l:指学习比率(变化率),手工指定,优化方法是,随着数据的迭代逐渐减小

偏向更新:  l:同上
3.3:终止条件
3.3.1权重的更新低于某个阀值
3.3.2预测的错误率低于某个阀值
3.3.3达到预设一定的循环次数



4:结合实例讲解算法



0.9对用的是L,学习率

测试代码如下:
1.NeutralNetwork.py文件代码
#coding:utf-8import numpy as np#定义双曲函数和他们的导数def tanh(x):return np.tanh(x)def tanh_deriv(x):return 1.0 - np.tanh(x)**2def logistic(x):return 1/(1 + np.exp(-x))def logistic_derivative(x):return logistic(x)*(1-logistic(x))#定义NeuralNetwork 神经网络算法class NeuralNetwork:#初始化,layes表示的是一个list,eg[10,10,3]表示第一层10个神经元,第二层10个神经元,第三层3个神经元def __init__(self, layers, activation='tanh'):""":param layers: A list containing the number of units in each layer.Should be at least two values:param activation: The activation function to be used. Can be"logistic" or "tanh""""if activation == 'logistic':self.activation = logisticself.activation_deriv = logistic_derivativeelif activation == 'tanh':self.activation = tanhself.activation_deriv = tanh_derivself.weights = []#循环从1开始,相当于以第二层为基准,进行权重的初始化for i in range(1, len(layers) - 1):#对当前神经节点的前驱赋值self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1))-1)*0.25)#对当前神经节点的后继赋值self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25)#训练函数   ,X矩阵,每行是一个实例 ,y是每个实例对应的结果,learning_rate 学习率,# epochs,表示抽样的方法对神经网络进行更新的最大次数def fit(self, X, y, learning_rate=0.2, epochs=10000):X = np.atleast_2d(X) #确定X至少是二维的数据temp = np.ones([X.shape[0], X.shape[1]+1]) #初始化矩阵temp[:, 0:-1] = X  # adding the bias unit to the input layerX = tempy = np.array(y) #把list转换成array的形式for k in range(epochs):#随机选取一行,对神经网络进行更新i = np.random.randint(X.shape[0])a = [X[i]]#完成所有正向的更新for l in range(len(self.weights)):a.append(self.activation(np.dot(a[l], self.weights[l])))#error = y[i] - a[-1]deltas = [error * self.activation_deriv(a[-1])]#开始反向计算误差,更新权重for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layerdeltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))deltas.reverse()for i in range(len(self.weights)):layer = np.atleast_2d(a[i])delta = np.atleast_2d(deltas[i])self.weights[i] += learning_rate * layer.T.dot(delta)#预测函数def predict(self, x):x = np.array(x)temp = np.ones(x.shape[0]+1)temp[0:-1] = xa = tempfor l in range(0, len(self.weights)):a = self.activation(np.dot(a, self.weights[l]))return a
2、测试代码
#coding:utf-8'''#基于NeuralNetwork的XOR(异或)示例import numpy as npfrom NeuralNetwork import NeuralNetworknn = NeuralNetwork([2,2,1], 'tanh')X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])y = np.array([0, 1, 1, 0])nn.fit(X, y)for i in [[0, 0], [0, 1], [1, 0], [1,1]]:print(i,nn.predict(i))''''''#基于NeuralNetwork的手写数字识别示例import numpy as npfrom sklearn.datasets import load_digitsfrom sklearn.metrics import confusion_matrix,classification_reportfrom sklearn.preprocessing import LabelBinarizerfrom sklearn.cross_validation import train_test_splitfrom NeuralNetwork import NeuralNetworkdigits = load_digits()X = digits.datay = digits.targetX -= X.min()X /= X.max()nn =NeuralNetwork([64,100,10],'logistic')X_train, X_test, y_train, y_test = train_test_split(X, y)labels_train = LabelBinarizer().fit_transform(y_train)labels_test = LabelBinarizer().fit_transform(y_test)print "start fitting"nn.fit(X_train,labels_train,epochs=3000)predictions = []for i in range(X_test.shape[0]):o = nn.predict(X_test[i])predictions.append(np.argmax(o))print confusion_matrix(y_test, predictions)print classification_report(y_test, predictions)'''#scikit-learn中的手写数字识别实例import numpy as npimport matplotlib.pyplot as pltfrom scipy.ndimage import convolvefrom sklearn import linear_model, datasets, metricsfrom sklearn.cross_validation import train_test_splitfrom sklearn.neural_network import BernoulliRBMfrom sklearn.pipeline import Pipeline################################################################################ Setting updef nudge_dataset(X, Y):direction_vectors = [[[0, 1, 0],[0, 0, 0],[0, 0, 0]],[[0, 0, 0],[1, 0, 0],[0, 0, 0]],[[0, 0, 0],[0, 0, 1],[0, 0, 0]],[[0, 0, 0],[0, 0, 0],[0, 1, 0]]]shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant',weights=w).ravel()X = np.concatenate([X] +[np.apply_along_axis(shift, 1, X, vector)for vector in direction_vectors])Y = np.concatenate([Y for _ in range(5)], axis=0)return X, Y# Load Datadigits = datasets.load_digits()X = np.asarray(digits.data, 'float32')X, Y = nudge_dataset(X, digits.target)X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001)  # 0-1 scalingX_train, X_test, Y_train, Y_test = train_test_split(X, Y,test_size=0.2,random_state=0)# Models we will uselogistic = linear_model.LogisticRegression()rbm = BernoulliRBM(random_state=0, verbose=True)classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)])################################################################################ Training# Hyper-parameters. These were set by cross-validation,# using a GridSearchCV. Here we are not performing cross-validation to# save time.rbm.learning_rate = 0.06rbm.n_iter = 20# More components tend to give better prediction performance, but larger# fitting timerbm.n_components = 100logistic.C = 6000.0# Training RBM-Logistic Pipelineclassifier.fit(X_train, Y_train)# Training Logistic regressionlogistic_classifier = linear_model.LogisticRegression(C=100.0)logistic_classifier.fit(X_train, Y_train)################################################################################ Evaluationprint()print("Logistic regression using RBM features:\n%s\n" % (metrics.classification_report(Y_test,classifier.predict(X_test))))print("Logistic regression using raw pixel features:\n%s\n" % (metrics.classification_report(Y_test,logistic_classifier.predict(X_test))))################################################################################ Plottingplt.figure(figsize=(4.2, 4))for i, comp in enumerate(rbm.components_):plt.subplot(10, 10, i + 1)plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r,interpolation='nearest')plt.xticks(())plt.yticks(())plt.suptitle('100 components extracted by RBM', fontsize=16)plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)plt.show()'''from sklearn.neural_network import BernoulliRBMX = [[0,0],[1,1]]y = [0,1]clf = BernoulliRBM().fit(X,y)print
测试结果如下:


如何用python和scikit learn实现神经网络

最新文章
热门文章
推荐阅读